DIFFERENTIATION

1

$$
\mathrm{f}(x)=(x+1)(x-2)^{2}
$$

a Sketch the curve $y=\mathrm{f}(x)$, showing the coordinates of any points where the curve meets the coordinate axes.
b Find $\mathrm{f}^{\prime}(x)$.
c Show that the tangent to the curve $y=\mathrm{f}(x)$ at the point where $x=1$ has the equation

$$
\begin{equation*}
y=5-3 x . \tag{3}
\end{equation*}
$$

2 The curve C has the equation $y=x-3 x^{\frac{1}{2}}+3$ and passes through the point $P(4,1)$.
a Show that the tangent to C at P passes through the origin.
The normal to C at P crosses the y-axis at the point Q.
b Find the area of triangle $O P Q$, where O is the origin.
3

The diagram shows the curve $y=x^{2}+x-2$. The curve crosses the x-axis at the points $A(a, 0)$ and $B(b, 0)$ where $a<b$.
a Find the values of a and b.
b Show that the normal to the curve at A has the equation

$$
\begin{equation*}
x-3 y+2=0 \tag{5}
\end{equation*}
$$

The tangent to the curve at B meets the normal to the curve at A at the point C.
c Find the exact coordinates of C.
4 Given that $y=\frac{x^{2}-6 x-3}{3 x^{\frac{1}{2}}}$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}$ can be expressed in the form $\frac{(x+a)^{2}}{b x^{\frac{3}{2}}}$, where a and b are integers to be found.
$5 \quad$ The point A lies on the curve $y=\frac{12}{x^{2}}$ and the x-coordinate of A is 2 .
a Find an equation of the tangent to the curve at A. Give your answer in the form $a x+b y+c=0$, where a, b and c are integers.
b Verify that the point where the tangent at A intersects the curve again has the coordinates $(-1,12)$.

6 A curve has the equation $y=2+3 x+k x^{2}-x^{3}$ where k is a constant.
Given that the gradient of the curve is -6 at the point P where $x=-1$,
a find the value of k.
Given also that the tangent to the curve at the point Q is parallel to the tangent at P,
b find the length $P Q$, giving your answer in the form $k \sqrt{5}$.

7 Differentiate $x^{2}+\frac{1}{2 x}$ with respect to x.
8 A curve has the equation $y=2 x^{2}-7 x+1$ and the point A on the curve has x-coordinate 2 .
a Find an equation of the tangent to the curve at A.
The normal to the curve at the point B is parallel to the tangent at A.
b Find the coordinates of B.

9

$$
\begin{equation*}
y=x^{2}+3 x^{\frac{1}{2}} \tag{3}
\end{equation*}
$$

a Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
b Show that $2 x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}-6 x=0$.
10 A curve has the equation $y=2+\frac{4}{x}$.
a Find an equation of the normal to the curve at the point $M(4,3)$.
The normal to the curve at M intersects the curve again at the point N.
b Find the coordinates of the point N.
11

The diagram shows the curve with equation $y=x^{3}-3 x^{2}-8 x+4$.
The straight line l is the tangent to the curve at the point $P(-1,8)$.
a Find an equation of line l.
The straight line m is parallel to l and is the tangent to the curve at the point Q.
b Find an equation of line m.
c Find an equation of the normal to the curve at P.
d Hence, or otherwise, show that the distance between lines l and m is $16 \sqrt{2}$.
12 A curve has the equation $y=\sqrt{x}(k-x)$, where k is a constant.
Given that the gradient of the curve is $\sqrt{2}$ at the point P where $x=2$,
a find the value of k,
b show that the normal to the curve at P has the equation

$$
x+\sqrt{2} y=c
$$

where c is an integer to be found.

